
ENTROPY STABLE APPROXIMATIONS OF NAVIER-STOKES EQUATIONS
WITH NO ARTIFICIAL NUMERICAL VISCOSITY

EITAN TADMOR AND WEIGANG ZHONG

Abstract. We construct a new family of entropy stable difference schemes which retain the precise
entropy decay of the Navier-Stokes equations, d/dt

∫
x
(−ρS)dx = −

∫
x

(
(λ+2µ)q2

x/θ+κ(θx/θ)2
)
dx. To

this end we employ the entropy conservative differences of [Tadmor2004] to discretize Euler convective
fluxes, and centered differences to discretize the dissipative fluxes of viscosity and heat conduction.
The resulting difference schemes contain no artificial numerical viscosity in the sense that their entropy
dissipation is dictated solely by viscous and heat fluxes. Numerical experiments provide a remarkable
evidence for the different roles of viscosity and heat conduction in forming sharp monotone profiles in
the immediate neighborhoods of shocks and contacts.

Dedicated with appreciation to Tai-Ping Liu on his 60th birthday
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1. Introduction

We consider the full Navier-Stokes (NS) equations for compressible viscous flows in one-space di-
mension,

∂

∂t




ρ
m
E


+

∂

∂x




m
qm+ p
q(E + p)


 = (λ+ 2µ)

∂2

∂x2




0
q

q2/2


+ κ

∂2

∂x2




0
0
θ


 . (1.1)

Here, ρ = ρ(x, t) is the density of the flow, m = m(x, t) is the momentum and E = E(x, t) stands for
the total energy per unit volume. The three equations express, respectively, conservation laws of mass,
momentum and total energy for the flow, driven by convective fluxes on the left together with viscous
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2 Eitan Tadmor and Weigang Zhong

and heat fluxes on the right. These fluxes involve the velocity q := m/ρ, the pressure p = p(x, t) which
is determined by an ideal polytropic equation of state,

p = (γ − 1)e, e := E − m2

2ρ
, (1.2)

and the absolute temperature, θ = θ(x, t) > 0, such that Cvρθ = e. The constant γ > 1 is the
specific heat ratio and e = e(x, t) is the internal energy. On the RHS of (1.1) we have the viscous and
heat fluxes, depending on the constant Lamé coefficients of the viscosity λ, µ > 0 and the constant
conductivity κ > 0. Finally, Cv > 0 is the specific heat at constant volume; for simplicity, we set
Cv = 1 while rescaling κ 7→ κ/Cv .

If the heat flux is excluded from the full NS equations, i.e. κ = 0, we obtain the viscous NS equations

∂

∂t




ρ
m
E


+

∂

∂x




m
qm+ p
q(E + p)


 = (λ+ 2µ)

∂2

∂x2




0
q

q2/2


 . (1.3)

On the other hand, if we turn off the viscosity, i.e. λ = µ = 0, then the NS equations amount to

∂

∂t




ρ
m
E


+

∂

∂x




m
qm+ p
q(E + p)


 = κ

∂2

∂x2




0
0
θ


 . (1.4)

If the heat flux and viscosity are both taken away, the system (1.1) is reduced to the compressible
Euler equations,

∂

∂t




ρ
m
E


+

∂

∂x




m
qm+ p
q(E + p)


 = 0. (1.5)

The additional viscous and heat flux terms on the RHS of the various NS equations (1.1), (1.3)
or (1.4), are dissipative terms in the sense that they are responsible for the dissipation of the total
entropy. To this end, we now discuss the entropy balance associated with the above equations. We
begin with the specific entropy S := ln (pρ−γ). A straightforward manipulation on (1.1), (1.2) yields
the transport equation,

St + qSx =
κ

ρ
(ln θ)xx + (λ+ 2µ)

q2x
e

+
κ

ρ

(
θx

θ

)2

. (1.6)

Multiplied by ρ, (1.6) becomes

ρSt +mSx = κ(ln θ)xx + (λ+ 2µ)
q2x
θ

+ κ

(
θx

θ

)2

. (1.7)

On the other hand, pre-multiplying the continuity equation, ρt +mx = 0, by S and adding it to (1.7),

∂

∂t

(
− ρS

)
+

∂

∂x

(
−mS + κ(ln θ)x

)
= −(λ+ 2µ)

q2x
θ

− κ

(
θx

θ

)2

. (1.8)

Spatial integration of (1.8) then yields

d

dt

∫

x

(
− ρS

)
dx = −(λ+ 2µ)

∫

x
q2x · 1

θ
dx− κ

∫

x
θx

2

(
1
θ

)2

dx. (1.9)

Since the expression on the right is negative, we conclude that the total entropy,
∫
x(−ρS) dx, is

decreasing in time, thus recovering the second law of thermodynamics, e.g., [GrootMazur1984]. In
fact, equation (1.9) specifies the precise entropy decay rate, which is dictated by the viscous and heat
fluxes through their dependence on the nonnegative κ, λ, and µ.
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The purpose of this paper is to present a systematic study of difference schemes which respect the
above entropy dissipation statements. The typical approach by practitioners in the field of Computa-
tional Fluid Dynamics is to address the general issue of entropy stability by adding ‘enough’ artificial
numerical viscosity — often an excessive amount of it, in order to mask various discretizations errors
and enforce the decay of the total entropy

∫
x(−ρS) dx. Our aim here is to construct more ’faithful’

approximations of the NS equations, with a discrete analogue for the precise entropy decay statement
in (1.9). Our prototype result is the following.

Theorem 1.1. Consider the NS equations (1.1),

∂

∂t
u +

∂

∂x
f(u) = ε

∂2

∂x2
d(u).

Here, u =
[
ρ,m,E

]> is the vector of conservative variables, f(u) is the corresponding 3-vector of
fluxes f(u) =

[
m, qm+ p, q(E + p)

]>, and εd(u) stands for the combined viscous and heat fluxes,

εd(u) = (λ+ 2µ)
[
0, q, q2/2

]> + κ
[
0, 0, θ

]>

where ε signals the vanishing amplitudes of viscosity and heat conductivity. We approximate these NS
equations by a semi-discrete scheme of the form

d

dt
uν(t) +

1
∆xν

(
f∗
ν+ 1

2

− f∗
ν− 1

2

)
=

ε

∆xν

(
d(uν+1) − d(uν)

∆xν+ 1
2

− d(uν) − d(uν−1)
∆xν− 1

2

)
. (1.10a)

Let f∗
ν+ 1

2

= f∗(uν ,uν+1) is the numerical flux given the by the explicit formula,

f∗
ν+ 1

2

= (γ − 1)
3∑

j=1

mj+1 −mj

〈`j ,vν+1 − vν〉
`j, v = v(u) :=

[
− E

e
− S + γ + 1,

q

θ
,−1

θ

]>
. (1.10b)

Here, {`j = `j

ν+ 1
2

}3
j=1 are three linearly independent directions in v-space at our disposal (consult

examples 3.1, 3.2 and 3.3 below); {rj = rj

ν+ 1
2

}3
j=1 is the corresponding orthogonal system and {mj =

mj

ν+ 1
2

}4
j=1 are the intermediate values of the momentum specified along the corresponding path, vj+1 =

vj + 〈`j,vν+1 − vν〉rj, starting with v1 =vν and ending with v4 =vν+1. Then, the resulting scheme
(1.10a),(1.10b) is entropy stable and the following discrete entropy balance holds1

d

dt

∑

ν

(−ρνSν)∆xν =

−(λ+ 2µ)
∑

ν

(
∆qν+ 1

2

∆xν+ 1
2

)2 (
1̂/θ
)

ν+ 1
2

∆xν+ 1
2
− κ

∑

ν

(
∆θν+ 1

2

∆xν+ 1
2

)2 (
1̃/θ
)2

ν+ 1
2

∆xν+ 1
2
≤ 0. (1.11)

We briefly describe the content of the paper, leading to the above result. The entropy balance (1.11)
is a precise discrete analogue of (1.9). The scheme (1.10a),(1.10b) contains no artificial numerical
viscosity in the sense that entropy dissipation is driven solely by the viscous and heat fluxes. In the
particular case that viscosity and the heat conduction are absent, κ = λ = µ = 0, then the entropy
balance (1.8) is reduced to the formal entropy equality of the Euler equations (1.5),

∂

∂t

(
− ρS

)
+

∂

∂x

(
−mS

)
= 0, (1.12)

1We let ẑν+ 1
2

and z̃ν+ 1
2

denote the arithmetic and geometric means, ẑν+ 1
2

=
(
zν + zν+1

)
/2 and z̃ν+ 1

2
=

√
zνzν+1.
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which in turn, implies the entropy conservation
∫
x(−ρS)(·, t) dx =

∫
x(−ρS)(·, 0) dx. Similarly, setting

εd = 0 we omit the dissipative terms in NS equations, and the difference scheme (1.10a) becomes
entropy conservative,

∑
(−ρνSν)(t)∆xν =

∑
(−ρνSν)(0)∆xν .

Entropy conservative schemes are studied in section 3, following [Tadmor2004]. The key ingredient here
is the construction of their entropy conservative fluxes, such as f∗

ν+ 1
2

in (1.10b). These fluxes employ

the so called entropy variables, v = v(u), which are discussed in section 2. The main results are then
summarized in theorems 3.1 and 3.2. Finally, in section 4 we present a series of numerical simulations
with the new schemes. The entropy conservative approximations of Euler equations are ‘purely dis-
persive’ and as such, their solutions experience dispersive oscillations, interesting for their own sake,
consult [Lax1986, HFMM1986, Tadmor1986, LLV1993, LevermoreLiu1996, LeFlochRhode2000] and
the references therein. Turning to the NS equations, our simulations provide a remarkable evidence
for the different roles that viscosity and heat conduction have in removing the dispersive oscillations,
to yield sharp monotone profiles of well-resolved shock and contact layers. No limiters were added,
but instead, the viscous and heat conduction terms in NS equations are found to serve as accurate
edge detectors

Remark 1.1. The viscous NS equations dissipate a general family of entropies, −ρh(S), where h(S)
is an arbitrary increasing function. Indeed, arguing along the above lines we multiply the continuity
equation by h(S) and adding it to (1.7)× h′(S) to find

∂

∂t

(
− ρh(S)

)
+

∂

∂x

(
−mh(S) + κ(ln θ)xh′(S)

)
=

= κh′′(S)Sx
θx

θ
− h′(S)

(
(λ+ 2µ)

q2x
θ

+ κ

(
θx

θ

)2
)
. (1.13)

In the case that the heat conduction is absent, the first term on the RHS of (1.13) vanishes, and we
are left with

d

dt

∫

x

(
− ρh(S)

)
dx = −(λ+ 2µ)

∫

x

q2x
θ
h′(S)dx. (1.14)

Thus, the viscous NS equations imply the dissipation of a family of entropies,
∫
x(−ρh(S)) dx for all

h′(S) > 0; consult [Harten1983]. Each one of these entropies carries its own entropy conservative
flux f∗

ν+ 1
2

. The explicit construction of such fluxes is outlined in theorem 3.1 below. Combining

these entropy conservative fluxes together with centered differencing of the additional viscous terms,
(λ+ 2µ)[0, q, q2/2]>, yield a generalization of theorem 1.1 which recovers the precise entropy balance
(1.14).

We note in passing that when heat conduction is present, however, the negativity of the first term
on the right of (1.13) requires h′′(S) = 0, so that we are left with one canonical entropy, h(S) ∼ S
discussed in theorem 1.1; consult [HFMM1986].

Remark 1.2. It is straightforward to generalize the recipe for ‘faithful’ entropy stable approximations
of multidimensional NS equations. The extension is carried out dimension by dimension and as
indicated in the one-dimensional setup of theorem 1.1, one has the freedom of choosing different paths
in phase space.

2. Entropy dissipation

2.1. The entropy variables. We turn our attention to general systems of hyperbolic conservation
laws

∂

∂t
u +

∂

∂x
f(u) = 0, (x, t) ∈ R × [0,∞), (2.1)
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governing the N -vector of conserved variables, u = [u1, . . . , uN ]>. The entropy equality

∂

∂t
U(u) +

∂

∂x
F (u) = 0. (2.2)

is an additional conservation law for an entropy function, U(u), which is balanced by an entropy flux
F (u). The Euler equations (1.5) are viewed as a prototype example for such systems, with the three
conservative variables u =

[
ρ,m,E

]> balanced by the flux f =
[
m, qm + p, q(E + p)

]> and endowed
with entropy pairs (U,F ) =

(
− ρh(S), −mh(S)

)
. We now briefly recall the circle of ideas linking the

dissipation of the total entropy,
∫
x U(u(·, t))dx, and the realization of u as a vanishing viscosity limit,

in analogy to the vanishing NS limits and their relation to entropic solutions of the Euler equations.
We refer to e.g., [Liu1991] and [Dafermos2000], for a more comprehensive discussion.

Let (U(u), F (u)) be a given entropy pair associated with (2.1). Note that U(u) satisfies the entropy
equality (2.2) if and only if it is linked to an entropy flux function F (u) through the compatibility
relation

U>
u fu = F>

u . (2.3)

Indeed, multiplying (2.1) by U>
u on the left, one recovers the equivalence between (2.2) and (2.3) for

all u’s solving (2.1). Of course, these formal manipulations are valid only under the smooth regime.
To justify these steps in the presence of shock discontinuities, the conservation law (2.1) is realized
by appropriate vanishing viscosity limits. To this end, we define the entropy variables v(u) := Uu(u).
We make the additional assumption that the entropy U(u) is convex, so that the mapping u 7→ v is
a one-to-one. Following, [Godunov1961, Mock1980], we claim that the change of variables, u = u(v),
puts the system (2.1) into the equivalent symmetric form,

∂

∂t
u(v) +

∂

∂x
f(u(v)) = 0. (2.4)

The system (2.4) is symmetric in the sense that the Jacobian matrices of fluxes are2,

uv(v) =
(
uv(v)

)> and fv(v) =
(
fv(v)

)>
. (2.5)

Indeed, a straightforward computation utilizing the compatibility relation (2.3), shows that u(v) and
f(v) are, respectively, the gradients of the corresponding potential functions, φ and ψ,

u(v) = φv(v), φ(v) := 〈v,u(v)〉 − U(u(v)), (2.6)

f(v) = ψv(v), ψ(v) := 〈v, f(v)〉 − F (u(v)). (2.7)

Hence the Jacobian matrices H(v) := uv(v) and B(v) := fv(v) in (2.5) are symmetric, being Hessians
of the potentials φ(v) and ψ(v). Moreover, the convexity of U(·) implies that H is positive definite,
H = (Uuu)−1 > 0.

Physically relevant solutions of (2.1) are postulated as limits of the vanishing viscosity solutions,

∂

∂t
uε +

∂

∂x
f(uε) = ε

∂2

∂x2
d(uε), (2.8)

where d(u) is any admissible dissipative flux, and ε ↓ 0 stands for vanishing amplitudes such as the
viscosity coefficients λ, µ, the heat conductivity κ, etc. Here, the admissibility of the dissipative flux
requires the Jacobian du to be H-symmetric positive-definite, that is,

dH = (dH)> ≥ 0, dH := duH. (2.9)

2For brevity of notations we often write f(v) for f(u(v)) whenever the different dependence of f(u) and f(v) is made
clear by the distinction between the conservative variables u and entropy variables v.
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If we express the dissipation flux in terms of the entropy variables, d(v) = d(u(v)), then admissi-
bility requires that the v-Jacobian of this flux will be positive symmetric, dH = dv(v) = d>

v (v) ≥ 0.
Thus, in this case (2.8) reads

∂

∂t
u(vε) +

∂

∂x
f(vε) = ε

∂2

∂x2
d(vε),

and all v-dependent fluxes — the temporal, spatial and the dissipation flux have symmetric Jacobains.
We now integrate (2.8) against v> = U>

u , employ the compatibility relation U>
u fx = F>

x and use
‘differentiation by parts’ on the admissible dissipation on the right to find

∂

∂t
U(uε) +

∂

∂x

(
F ε(uε) − ε

〈
vε,d(uε)x

〉)
= −ε

〈
vε

x, dvvε
x

〉
≤ 0. (2.10)

Letting ε ↓ 0, we obtain the entropy inequality, [Lax1973]

∂

∂t
U(u) +

∂

∂x
F (u) ≤ 0, (2.11)

which is the generalization of the entropy decay statements for NS equations (1.8) and (1.13).

2.2. Examples of entropy pairs for Navier-Stokes equations. The NS equations admit the
family of convex entropy pairs

U(u) = −ρh(S), F (u) = −mh(S), h′(·) ≥ 0. (2.12)

Here S = ln (pρ−γ) is the specific entropy and the convexity of the corresponding U(u)’s as functions
of u = (ρ,m,E)> holds iff h′(S) − γh′′(S) > 0, [Harten1983]. We consider two prototype examples.

Example 2.1. The simplest choice of h(S) is the specific entropy S itself,

h(S) = S = ln
(
pρ−γ

)
. (2.13)

Straightforward computation gives us the following entropy pair, entropy variables, and potentials.
• Entropy pair U(u) = −ρS and F (u) = −mS;
• Entropy variable (consult [Harten1983])

v(u) =




−E/e− S + γ + 1
q/θ
−1/θ


 (2.14)

with the inverse mapping

u(v) =
p

γ − 1




−v3
v2

1 − v2
2

2v3


 = w




−v3
v2

1 − v2
2

2v3


 , where w =

(
γ − 1

(−v3)γ

) 1
γ−1

e

(
−S
γ−1

)
, S = γ − v1 +

v2
2

2v3
;

• Potential pair φ = (γ − 1)ρ and ψ = (γ − 1)m.
In this case, the general statement of entropy balance in (2.10) with the entropy pair (U, F ) =
(−ρS, −mS) amounts to the one we have in (1.9),

d

dt

∫

x
−
(
ρS
)
dx = −ε

∫

x
〈vε

x, dvvε
x〉 dx = −(λ+ 2µ)

∫

x

q2x
θ
dx− κ

∫

x

θ2
x

θ2
dx ≤ 0. (2.15)

Example 2.2. A particularly convenient form of entropy variables is associated the entropy function
(consult [Harten1983, Tadmor2004]),

U(u) = −ρh(S) with h(S) =
γ + 1
γ − 1

e
S

γ+1 , (2.16)

where we have the following.
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• Entropy pair U(u) =
1 + γ

1 − γ
(ρp)

1
1+γ and F (u) =

1 + γ

1 − γ
q(ρp)

1
1+γ ;

• Entropy variable v(u) = ∇uU(u) = −(ρp)−
γ

1+γ




E
−m
ρ




with the inverse mapping

u(v) = −(ρp)
γ

γ+1




v3
−v2
v1


 = −

[
(γ − 1)

(
v1v3 −

v2
2

2

)] γ
1−γ




v3
−v2
v1


;

• Potential pair (φ, ψ) =
(
(ρp)

1
γ+1 ,m(pρ−γ)

1
γ+1

)

In case that the heat conduction is absent (κ = 0), we apply the general statement of entropy balance
(2.10) with the entropy pair, (U, F ) = 1+γ

1−γ

(
(ρp)

1
1+γ , q(ρp)

1
1+γ
)
, obtaining

d

dt

∫

x
−(ρp)

1
1+γ dx = −ε

∫

x
〈vε

x, dvvε
x〉 dx

≡ −(λ+ 2µ)
∫

x

(γ − 1)h′(S)q2x
(1 + γ)θ

dx = −λ+ 2µ
1 + γ

∫

x

eS/(1+γ)q2x
θ

dx ≤ 0. (2.17)

Remark 2.1. As noted in [Harten1983], the flux f(v) is a homogeneous function of degree η =:
(1 + γ)/(1 − γ), f(αv) = αηf(v), ∀α ∈ R. Homogeneity implies that fv(v)v = ηf(v) which in turn,
enables us to rewrite the spatial flux in (2.1) in a skew-adjoint form, f(u)x =

(
fvvx +(fvv)x

)
/(η+ 1);

consult [Tadmor1984a].

3. Entropy stable schemes for Navier-Stokes equations

3.1. Entropy conservative schemes. We turn our attention to consistent approximations of (2.1),
based on semi-discrete conservative schemes of the form

d

dt
uν(t) = − 1

∆xν

(
fν+ 1

2
− fν− 1

2

)
. (3.1)

Here, uν(t) denotes the discrete solution along the grid line (xν , t), ∆xν := 1
2 (xν+1 − xν−1) is the

possibly variable mesh spacing and fν+ 1
2

is the Lipschitz-continuous numerical flux which occupies a
stencil of (2p+ 1)-gridvalues,

fν+ 1
2

= f(uν−p+1, · · · ,uν+p).

The scheme is said to be consistent with the system (2.1) if f satisfies f(u,u, · · · ,u) = f(u), ∀u ∈ RN .
By making the changes of variables uν = u(vν), we obtain the equivalent form of (3.1)

d

dt
u(vν(t)) = − 1

∆xν

(
fν+ 1

2
− fν− 1

2

)
. (3.2)

The essential difference lies with the numerical flux, fν+ 1
2
, which is now expressed in terms of the

entropy variables,

fν+ 1
2

= f (vν−p+1, · · · ,vν+p) := f (u (vν−p+1) , · · · ,u (vν+p)) ,

consistent with the differential flux,

f(v,v, · · · ,v) = f(v) ≡ f(u(v)). (3.3)

The semi-discrete schemes (3.1) and (3.2) are completely identical. It proved useful, however, to work
with the entropy variables rather than the usual conservative ones, since system (2.1) is symmetrized
with respect to these entropy variables. The entropy variables-based formula (3.2) has the advantage
that it provides a natural ordering of symmetric matrices, which in turn enables us to compare the
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numerical viscosities of different schemes, consult [Tadmor1984b, Tadmor1987] for details. In partic-
ular, we will be able to utilize the entropy conservative discretization of [Tadmor2004] for the Euler
convective part of the equations, and thus recover the precise entropy balance dictated by viscous and
heat fluxes in NS equations.

Let (U,F ) be a given entropy pair. We proceed with the construction of an entropy conservative
scheme, in the sense of satisfying a discrete entropy equality analogous to (2.2),

d

dt
U (uν(t)) +

1
∆xν

(
Fν+ 1

2
− Fν− 1

2

)
= 0. (3.4)

Here, Fν+ 1
2

= F (uν−p+1, · · · ,uν+p) is a consistent numerical entropy flux, such that F (u,u, · · · ,u) =

F (u), ∀u ∈ RN . The numerical flux of such entropy conservative schemes will play an essential role
in the construction of entropy stable schemes, by adding a judicious amount of physical viscosity.

The key step in the construction of entropy conservative schemes is the choice of an arbitrary
piecewise-constant path in phase space, connecting two neighboring gridvalues vν and vν+1 through
the intermediate states {vj

ν+ 1
2

}N
j=1 at the spatial cell [xν , xν+1]. Let {rj

ν+ 1
2

}N
j=1 be an arbitrary set of N

linearly independent N -vectors, and let {`j

ν+ 1
2

}N
j=1 be the corresponding orthogonal set. We introduce

the intermediate gridvalues {vj

ν+ 1
2

}N
j=1, which define a piecewise constant path in phase space





v1
ν+ 1

2
= vν

vj+1

ν+ 1
2

= vj

ν+ 1
2

+
〈

`j

ν+ 1
2

,∆vν+ 1
2

〉
rj

ν+ 1
2

, j = 1, 2, · · · , N − 1,

vN+1
ν+ 1

2

= vν+1

∆vν+ 1
2

:= vν+1 − vν . (3.5)

Theorem 3.1 (Tadmor2004, Theorem 6.1). Consider the system of conservation laws (2.1). Given
the entropy pair (U, F ), then the conservative scheme

d

dt
uν(t) = − 1

∆xν

(
f∗
ν+ 1

2
− f∗

ν− 1
2

)
(3.6)

with a numerical flux f∗
ν+ 1

2

f∗
ν+ 1

2
=

N∑

j=1

ψ

(
vj+1

ν+ 1
2

)
− ψ

(
vj

ν+ 1
2

)

〈
`j

ν+ 1
2

,∆vν+ 1
2

〉 `j

ν+ 1
2

(3.7)

is an entropy-conservative approximation, consistent with (2.1),(2.2). Here, v are the entropy vari-
ables, v = Uu(u) and ψ(v) is the entropy potential (2.7) ψ(v) = 〈v, f(u(v))〉 − F (u(v)).

The proof is based on the requirement of entropy conservation in [Tadmor1987, Theorem 5.2],
〈
∆vν+ 1

2
, f∗

ν+ 1
2

〉
= ∆ψν+ 1

2
, ∆ψν+ 1

2
:= ψ(vν+1) − ψ(vν). (3.8)

The numerical flux (3.7) satisfies this entropy conservation requirement, for

〈
∆vν+ 1

2
, f∗

ν+ 1
2

〉
=

N∑

j=1

ψ

(
vj+1

ν+ 1
2

)
− ψ

(
vj

ν+ 1
2

)

〈
`j

ν+ 1
2

,∆vν+ 1
2

〉
〈

`j

ν+ 1
2

, ∆vν+ 1
2

〉

=
N∑

j=1

ψ

(
vj+1

ν+ 1
2

)
− ψ

(
vj

ν+ 1
2

)
= ψ

(
vN+1

ν+ 1
2

)
− ψ

(
v1

ν+ 1
2

)
= ∆ψν+ 1

2
.



Entropy stable approximations for the Navier-Stokes equations 9

In addition, f∗
ν+ 1

2

is a consistent flux satisfying (3.3). Indeed, if we let v
j+ 1

2

ν+ 1
2

(ξ) denote intermediate

path, v
j+ 1

2

ν+ 1
2

(ξ) := (vj

ν+ 1
2

+ vj+1

ν+ 1
2

)/2 + ξ〈`j

ν+ 1
2

,∆vν+ 1
2
〉rj

ν+ 1
2

connecting vj

ν+ 1
2

and vj+1

ν+ 1
2

, then by (2.7),

we have

ψ

(
vj+1

ν+ 1
2

)
− ψ

(
vj

ν+ 1
2

)
=
∫ 1

2

ξ=− 1
2

d

dξ
ψ

(
v

j+ 1
2

ν+ 1
2

(ξ)
)
dξ

=

〈∫ 1
2

ξ=− 1
2

f
(
v

j+ 1
2

ν+ 1
2

(ξ)
)
dξ, rj

ν+ 1
2

〉〈
`j

ν+ 1
2

,∆vν+ 1
2

〉
.

Inserted into (3.7), we can rewrite the entropy-conservative flux (3.7) in the equivalent form

f∗
ν+ 1

2
=

N∑

j=1

〈∫ 1
2

ξ=− 1
2

f
(
v

j+ 1
2

ν+ 1
2

(ξ)
)
dξ, rj

ν+ 1
2

〉
`j

ν+ 1
2

, (3.9)

and the consistency relation (3.3) now follows, f∗(v,v) =
N∑

j=1

〈
f(v), rj

ν+ 1
2

〉
`j

ν+ 1
2

= f(v). 2

We emphasize that the recipe for construction entropy-conservative fluxes in (3.7) allows an arbitrary
choice of a path in phase space. We demonstrate this recipe with three examples.

Example 3.1. Set {rj} along the standard Cartesian coordinates, rj

ν+ 1
2

= ej , j = 1, 2, . . . , N . In

this case we have

vj

ν+ 1
2

=
[(

vν+1

)
1
, . . . ,

(
vν+1

)
j−1

,
(
vν

)
j
, . . . ,

(
vν

)
N

]>
, j = 2, 3, . . . , N − 1,

and the entropy conservative flux (3.7) is given by the particularly simple explicit formula

f∗
ν+ 1

2
=



ψ
(
v2

ν+ 1
2

)
− ψ

(
vν

)
(
vν+1

)
1
−
(
vν

)
1

, . . . ,
ψ
(
vj+1

ν+ 1
2

)
− ψ

(
vj

ν+ 1
2

)
(
vν+1

)
j
−
(
vν

)
j

, . . . ,
ψ
(
vν+1

)
− ψ

(
vN

ν+ 1
2

)
(
vν+1

)
N
−
(
vν

)
N



>

. (3.10)

We carried out numerical experiments with these fluxes for the approximate solution of Euler and NS
equations. The formulation is particularly simple though the computed intermediate values might lie
outside the physical space ρ, p > 0.

Example 3.2. A more ‘physically relevant’ choice than the Cartesian path is offered by a Riemann
path which consists of {uj

ν+ 1
2

}N
j=1, stationed along an (approximate) set of right eigenvectors, {r̂j

ν+ 1
2

},

of the Jacobian fu(uν+ 1
2
). Set vj

ν+ 1
2

= v(uj

ν+ 1
2

), j = 1, 2, . . . , N , and let `j’s be the orthogonal system

to {vj+1 − vj}N
j=1. This will be our choice of a path for computing entropy stable approximations

of NS equations in section 3.2 below. The resulting flux, mixing conservative and entropy variables,
admits the somewhat simpler form

f∗
ν+ 1

2

=
N∑

j=1

ψ

(
uj+1

ν+ 1
2

)
− ψ

(
uj

ν+ 1
2

)

〈
`j

ν+ 1
2

,∆vν+ 1
2

〉 `j

ν+ 1
2

where ψ(u) =
(
Uu(u)

)>f(u) − F (u). (3.11)

Example 3.3. If all rj’s are chosen to approach the same direction of ∆vν+ 1
2
, then by (3.9) the flux

(3.9) ‘collapses’ to the entropy-conservative flux

f∗
ν+ 1

2
=
∫ 1

2

ξ=− 1
2

f
(
vν+ 1

2
(ξ)
)
dξ, vν+ 1

2
(ξ) :=

1
2
(vν + vν+1) + ξ∆vν+ 1

2
. (3.12)



10 Eitan Tadmor and Weigang Zhong

The resulting flux (3.12) was introduced in [Tadmor1986] and was the forerunner for the family of
entropy conservative fluxes outlined in theorem 3.1. It has the drawback, however, that its evaluation
requires a nonlinear integration in phase space. Thus, with the loss of linear independence, we lose
here the explicit evaluation of the entropy conservative flux offered in (3.7) and demonstrated in the
previous two examples.

3.2. Entropy stable semi-discrete schemes for Navier-Stokes equations.

3.2.1. The compressible Euler equations. Let (U,F ) be an admissible entropy pair associated with the
Euler equations (1.5), let v = v(u) denote the corresponding entropy variables outlined in examples
2.1 and 2.2 above. To conserve the total entropy

∫
x U(u(·, t))dx, we appeal to the semi-discrete scheme

(3.6) with the entropy-conservative numerical flux (3.7),

f∗
ν+ 1

2

=
3∑

j=1

ψ

(
vj+1

ν+ 1
2

)
− ψ

(
vj

ν+ 1
2

)

〈
`j

ν+ 1
2

,∆vν+ 1
2

〉 `j

ν+ 1
2

.

To compute f∗
ν+ 1

2

, we distinguish between two cases. If vν = vν+1, we employ the equivalent form of

the numerical flux in (3.9),

f∗
ν+ 1

2
=

3∑

j=1

〈∫ 1
2

ξ=− 1
2

f
(
v

j+ 1
2

ν+ 1
2

(ξ)
)
dξ, rj

ν+ 1
2

〉
`j

ν+ 1
2

,

which implies that all the intermediate gridvalues coincide, vν = v1
ν+ 1

2

= v2
ν+ 1

2

= v3
ν+ 1

2

= v4
ν+ 1

2

= vν+1

and the entropy-conservative flux amounts to f∗
ν+ 1

2

= fν = fν+1. Otherwise, if vν 6= vν+1, we choose

to work along the path which is dictated by an (approximate) Riemann solver. Specifically, we use
the eigensystem of the Roe matrix, [A]ν+ 1

2
= A(uν ,uν+1), [Roe1981],

[A]ν+ 1
2

:=




0 1 0
γ−3

2 q̄2
ν+ 1

2

(3 − γ)q̄ν+ 1
2

γ − 1
γ−1

2 q̄3
ν+ 1

2

− q̄ν+ 1
2
H̄ν+ 1

2
H̄ν+ 1

2
− (γ − 1)q̄2

ν+ 1
2

γq̄ν+ 1
2


 . (3.13a)

Here q̄ and H̄ are the average values of the velocity q and total enthalpy H = (E+p)/ρ at Roe-average
state,

q̄ν+ 1
2

=
qν
√
ρν + qν+1

√
ρν+1√

ρν + √
ρν+1

, H̄ν+ 1
2

=
Hν

√
ρν +Hν+1

√
ρν+1√

ρν + √
ρν+1

. (3.13b)

The rj’s are the right eigenvectors {r̂j ≡ r̂j

ν+ 1
2

}3
j=1 of the Roe matrix (3.13a) given by (omitting the

subscript (·)ν+ 1
2

of all averaged variables)

r̂1 =




1
q̄ − c̄
H̄ − q̄c̄


 , r̂2 =




1
q̄

q̄2/2


 , r̂3 =




1
q̄ + c̄
H̄ + q̄c̄


 , (3.13c)

with the corresponding left eigenvector set {̂̀j
≡ ̂̀j

ν+ 1
2
}3

j=1 given by

̂̀1 =




(2 + δ)/(4(γ − 1))
−(1 + δ)/(2c̄)
(γ − 1)/(2c̄2)


 , ̂̀2 =




1 − δ2/(2(γ − 1))
δ/c̄

−(γ − 1)/c̄2


 , ̂̀3

=




−(2 − δ)/(4(γ − 1))
(1 − δ)/(2c̄)
(γ − 1)/(2c̄2)


 . (3.13d)
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Here δ := (γ − 1)q̄/c̄, and c̄ is the average sound speed given by c̄2 = (γ − 1)
(
H̄ − q̄2

2

)
.

We are now able to form the intermediate path in u−space as in (3.5)

uj+1 = uj +
〈
̂̀j
, ∆u

〉
r̂j, j = 1, 2, 3. (3.14)

Since the mapping between u and v is one-to-one, then these intermediate gridvalues in u−space,
{uj}4

j=1, correspond to intermediate gridvalues {vj}4
j=1 in v−space. We let {rj}3

j=1 be the (right)
vectors connecting these v-values, rj := vj+1 − vj , and let {`j}3

j=1 be the corresponding (left) or-
thogonal set. We summarize the algorithm of computing the entropy-conservative flux f∗

ν+ 1
2

in the
following.

Algorithm 3.1. If uν = uν+1 then f∗
ν+ 1

2

= f(vν); else

• Set u1
ν+ 1

2

:= uν and compute recursively the intermediate states,

uj+1

ν+ 1
2

= uj

ν+ 1
2

+
〈
̂̀j

ν+ 1
2
,∆uν+ 1

2

〉
r̂j

ν+ 1
2

, j = 1, 2, 3. (3.15)

Here, {̂̀j

ν+ 1
2
} and {r̂j

ν+ 1
2

} are the left and right eigensystems of the Roe matrix in (3.13c), (3.13d).

• Set rj

ν+ 1
2

= v(uj+1

ν+ 1
2

) − v(uj

ν+ 1
2

) and compute {`j}3
j=1 as the corresponding orthogonal system,

〈
`j

ν+ 1
2

, rk
ν+ 1

2

〉
= δjk, rj

ν+ 1
2

:= vj+1

ν+ 1
2

− vj

ν+ 1
2

(3.16)

• Compute the entropy-conservative numerical flux, f∗
ν+ 1

2
=

3∑

j=1

ψ

(
vj+1

ν+ 1
2

)
− ψ

(
vj

ν+ 1
2

)

〈
`j

ν+ 1
2

,∆vν+ 1
2

〉 `j

ν+ 1
2

Remark 3.1. Observe that if {uj+1 − uj}3
j=1 are linearly independent then, since uv is symmetric

positive definite, the corresponding set of directions in v-phase space, {vj+1−vj}3
j=1, are also linearly

independent, at least when uν+1 is in a small neighborhood of uν . It guarantees the existence of the
orthogonal set {`j}3

j=1. But what happens when 〈ˆ̀j
,∆u〉 = 0 for certain j’s? for example, if uν is

connected to uν+1 through a k-shock, then the Roe matrix [A]ν+ 1
2

retains the perfect resolution of

such a shock by enforcing 〈ˆ̀j
,∆u〉 = 0, ∀j 6= k and we can omit the contribution of these sub-paths to

the conservative flux f∗. The general approach is to construct a precise mirror image of the Roe-path
in v-phase space in terms of the right and left orthogonal systems,

rj := [H]−1
ν+ 1

2

r̂j , `j := [H]ν+ 1
2

ˆ̀j
, j = 1, 2, . . . , (3.17)

where [H]ν+ 1
2

denotes an averaged symmetrizer such that ∆uν+ 1
2

= [H]ν+ 1
2
∆vν+ 1

2
(and there are

many such averages). Then, {rj}3
j=1 forms the path in v-phase space, vj+1 = vj + 〈`j ,∆v〉rj , which

retains the desired Roe property of perfect resolution of shocks. Indeed, if ∆u is a k-shock with
speed s then it satisfies (omitting subscripts) ∆f = s∆u = s[H]∆v. But the Roe matrix in (3.13a)
is constructed so that [Roe1981], ∆f = [A]∆u = [A][H]∆v, and we conclude ∆v = rk. Thus,
〈`j ,∆v〉 = 0, ∀j 6= k. The corresponding entropy conservative numerical flux reads

f∗
ν+ 1

2

=
∑

{j
∣∣ ξj 6=0}

ψ

(
vj

ν+ 1
2

+ ξjrj

ν+ 1
2

)
− ψ

(
vj

ν+ 1
2

)

ξj
`j

ν+ 1
2

, ξj =
〈

`j

ν+ 1
2

,∆vν+ 1
2

〉
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3.2.2. The Navier-Stokes equations. We turn to the construction of entropy-stable schemes for the full
NS equations (1.1). To this end, we rewrite the equation as a system of conservation laws

∂

∂t
u +

∂

∂x
f(u) = ε

∂2

∂x2
d(u), u =




ρ
m
E


 , f(u) =




m
qm+ p
q(E + p)


 , (3.18a)

with additional diffusive terms

εd(u) := (λ+ 2µ)




0
q

q2/2


+ κ




0
0
θ


 . (3.18b)

For the convection part on the LHS, we use the same entropy-conservative differencing used for the
Euler equations. For the dissipative terms on the RHS, we employ standard centered differences. We
arrive at our main result.

Theorem 3.2. Let (U, F ) be a given entropy pair of the NS equations (3.18a),(3.18b), which respect
the entropy inequality (2.10). Consider the semi-discrete approximation

d

dt
uν(t) +

1
∆xν

(
f∗
ν+ 1

2
− f∗

ν− 1
2

)
=

ε

∆xν

(
dν+1 − dν

∆xν+ 1
2

− dν − dν−1

∆xν− 1
2

)
. (3.19a)

Here f∗
ν+ 1

2

is an entropy conservative numerical flux (3.7),

f∗
ν+ 1

2

=
3∑

j=1

ψ

(
vj+1

ν+ 1
2

)
− ψ

(
vj

ν+ 1
2

)

〈
`j

ν+ 1
2

,∆vν+ 1
2

〉 `j

ν+ 1
2

, (3.19b)

which is outlined in algorithm 3.1 above.
{i} The resulting scheme (3.19a),(3.19b) is entropy-dissipative in the sense that

d

dt

∑

ν

Uν(t)∆xν = −
∑

ν

ε

∆xν+ 1
2

〈
∆vν+ 1

2
,

∆dν+ 1
2

∆vν+ 1
2

∆vν+ 1
2

〉
≤ 0. (3.20)

This entropy balance is a discrete analogue of the entropy balance statements (2.15) and (2.17).
{ii} In the specific case of the canonical entropy pair (U, F ) = (−ρS, −mS), the entropy decay

(3.20) amounts to (1.11)

d

dt

∑

ν

Uν(t)∆xν =

−(λ+ 2µ)
∑

ν

(
∆qν+ 1

2

∆xν+ 1
2

)2 (
1̂/θ
)

ν+ 1
2

∆xν+ 1
2
− κ

∑

ν

(
∆θν+ 1

2

∆xν+ 1
2

)2 (
1̃/θ
)2

ν+ 1
2

∆xν+ 1
2
≤ 0. (3.21)

Proof. We multiply (3.19a) by [Uu]>ν = v>
ν , then sum up all spatial cells to get the balance of the

total entropy,

d

dt

∑

ν

Uν(t)∆xν +
∑

ν

〈
vν , f∗ν+ 1

2
− f∗

ν− 1
2

〉
= ε

∑

ν

〈
vν ,

dν+1 − dν

∆xν+ 1
2

− dν − dν−1

∆xν− 1
2

〉
. (3.22)

Since we chose f∗
ν+ 1

2

as the entropy conservative flux, a straightforward manipulation on the entropy

conservation requirement (3.8) yields the conservative difference,
〈
vν , f∗ν+ 1

2

− f∗
ν− 1

2

〉
= Fν+ 1

2
− Fν− 1

2
, (3.23)
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where 2Fν+ 1
2

=
〈
(vν + vν+1) , fν+ 1

2

〉
− (ψ(vν) + ψ(vν+1)). On the other hand, summation by parts

on the RHS of (3.22) yields

ε
∑

ν

〈
vν ,

dν+1 − dν

∆xν+ 1
2

− dν − dν−1

∆xν− 1
2

〉
∆x|nuhf = −

∑

ν

ε

∆xν+ 1
2

〈vν+1 − vν , dν+1 − dν〉

= −
∑

ν

ε

∆xν+ 1
2

〈
∆vν+ 1

2
, ∆dν+ 1

2

〉
(3.24a)

= −
∑

ν

ε

∆xν+ 1
2

〈
∆vν+ 1

2
,

∆dν+ 1
2

∆vν+ 1
2

∆vν+ 1
2

〉
. (3.24b)

By (3.23) and (3.24b), the semi-discrete entropy balance amounts to

d

dt

∑

ν

Uν(t)∆xν = −
∑

ν

ε

∆xν+ 1
2

〈
∆vν+ 1

2
,

∆dν+ 1
2

∆vν+ 1
2

∆vν+ 1
2

〉
. (3.25)

Here

∆dν+ 1
2

∆vν+ 1
2

=
∫ 1

2

ξ=− 1
2

dv

(
vν+ 1

2
(ξ)
)
dξ,

where vν+ 1
2
(ξ) is given by (3.12). By the admissibility of the dissipative NS fluxes dv ≥ 0 and the

RHS of (3.25) is indeed non-positive. Thus, the semi-discrete scheme (3.19a) guarantees the total
entropy dissipation.

In the specific case of the entropy pair (U, F ) = (−ρS, −mS), the entropy variable are found in
(2.14), and we explicitly compute the inner products in (3.24a) as (omitting all subscripts),

−
∑

ν

ε

∆x
〈∆v, ∆d〉 = −

∑

ν

1
∆x

{
(λ+ 2µ)∆

(q
θ

)
∆q − λ+ 2µ

2
∆
(

1
θ

)
∆
(
q2
)
− κ∆

(
1
θ

)
∆θ
}

= −(λ+ 2µ)
∑

ν

1
∆x

(∆q)2
1
2

(
1

θν+1
+

1
θν

)
− κ

∑

ν

1
∆x

∆
(

1
θ

)
∆θ

= −(λ+ 2µ)
∑

ν

(
∆q
∆x

)2 1
2

(
1

θν+1
+

1
θν

)
∆x− κ

∑

ν

(
∆θ
∆x

)2 1
θν+1θν

∆x ≤ 0.

The discrete entropy balance (1.11) now follows. 2

We emphasize the main point made here, namely, we introduce no excessive entropy dissipation
due to spurious, artificial numerical viscosity: by (3.20), the semi-discrete scheme contains the precise
amount of numerical viscosity to enforce the correct entropy dissipation dictated by the NS equations.

3.3. Time discretization. To complete the computation of a semi-discrete scheme, it needs to be
augmented with a proper time discretization. To enable a large time-stability region and maintain
simplicity, the three-stage third-order Runge-Kutta (RK3) method will be used, consult [GST2001],

uν(tn + ∆t) = uν(tn) +
∆t
9

(2Kν,1 + 3Kν,2 + 4Kν,3), (3.26)
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where




Kν,1 =
1

∆xν

{
f∗
ν+ 1

2

(
un

ν ,u
n
ν+1

)
− f∗

ν− 1
2

(
un

ν−1,u
n
ν

)}

Kν,2 =
1

∆xν

{
f∗
ν+ 1

2

(
un

ν +
∆t
2
Kν,1,un

ν+1 +
∆t
2
Kν+1,1

)

−f∗
ν− 1

2

(
un

ν−1 +
∆t
2
Kν−1,1,un

ν +
∆t
2
Kν,1

)}

Kν,3 =
1

∆xν

{
f∗
ν+ 1

2

(
un

ν +
3∆t
4
Kν,2,un

ν+1 +
3∆t
4
Kν+1,2

)

−f∗
ν− 1

2

(
un

ν−1 +
3∆t
4
Kν−1,2,un

ν +
3∆t
4
Kν,2

)}

.

The resulting fully-discrete schemes has a spatial stencil involving seven-point gridvalues, with two
“ghost” boundary values on the left boundary and two “ghost” boundary on the right required to close
the system. For simplicity, these “ghost” values are extrapolated from the given Dirichlet boundary
values. We note in passing that though the fully explicit RK3 time discretization need not conserve
the entropy, it introduces a negligible amount of entropy dissipation; for a general framework of
entropy-conservative fully discrete schemes consult [LMR2002].

4. Numerical experiments

We consider ideal polytropic gas equations as an approximation of air with

γ = 1.4, Cv = 716, κ = 0.03, λ+ 2µ = 2.28 × 10−5

We simulate the Sod’s shocktube problem, [Sod1978], where the Euler and NS equations are solved
over the interval [0, 1] subject to Riemann initial conditions

(ρ,m,E)t=0 =
{

(1.0, 0.0, 2.5) 0 < x ≤ 0.5
(0.125, 0.0, 0.25) 0.5 < x < 1.

In the following figures, we display the numerical solutions for the fully discrete scheme (3.26) with
the numerical flux (3.7), or in its equivalent yet simpler form (3.11). Uniform space and time grid
sizes, ∆x and ∆t, are used. Both viscous and inviscid cases are explored. We use different spatial
resolutions for the same problem, and adjust time step according to the CFL condition. Different
choices of entropy function are also tested in the numerical experiments. We group our results into
four sets.

1. Euler equations. The first four sets of figures are devoted to the Euler equations with zero
viscous and heat fluxes (1.5).

With the choice of the entropy pair

(U(u), F (u)) =
(

1 + γ

1 − γ
(ρp)

1
1+γ ,

1 + γ

1 − γ
q(ρp)

1
1+γ

)
, (4.1)

Figure 4.1 depicts the density, velocity, and pressure fields at t = 0.05 and t = 0.1; here we use
∆x = 0.001 and ∆t

∆x = 0.025. Comparing these to the corresponding results of the canonical entropy
pair

(U(u), F (u)) =
(
−ρ ln(pρ−γ), −m ln(pρ−γ)

)
, (4.2)

in figure 4.2, we see that the different choices of entropies do not affect the behavior of the numerical
solutions. Figures 4.1(d) and 4.2(d) demonstrate the conservation of the total entropies: the negligible
amount of entropy decay ∼ 10−4 is introduced by the RK3 time discretization.

Next, we make the same comparison for the refined the spatial mesh, taking ∆x = 0.00025, ∆t
∆x =

0.1. Figure 4.3 presents the computed solutions of density, velocity, and pressure fields at t = 0.05 and
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t = 0.1 with the entropy pair (4.1) while figure 4.4 depicts the solutions with the canonical entropy
pair (4.2). The total entropy is shown in figures 4.3(d) and 4.4(d).

The above results demonstrate the purely dispersive character of the entropy conservative schemes.
Dispersive oscillations on the mesh scale are observed in shocks and contact regions, due to the absence
of any dissipation mechanism, consult [Lax1986, LevermoreLiu1996]. The numerical solutions do not
blow up. Actually, as we refine the mesh, these dispersive oscillations approach a modulated wave
envelope. The study of these modulated waves in the conservative Euler equations would be an
extremely challenging task. A similar entropy conservative Lagrangian formulation of Euler equations
of [TrulioTrigger1961] motivated the discussion in [Lax1986].

2 Navier-Stokes equations with heat flux. We solve the Navier-Stokes equations (1.4). The
results are summarized in the next three sets of figures 4.5–4.7. We follow the same pattern of
plotting density, velocity, pressure and total entropy. As before, the choice of entropy pairs (4.1) in
figures 4.5 and 4.6 are very similar.

The presence of heat flux causes the oscillations to be dramatically reduced around the contact
discontinuity. Furthermore, oscillations are significantly damped around the shock; when the mesh
is well-refined, figure 4.7 shows that heat conduction causes these oscillations to be well localized in
the immediate neighborhood of the shocks. If the mesh is underresolved, a small portion of dispersive
oscillations persist in the neighborhood of shocks.

3. Navier-stokes equations with viscosity and no heat flux. We solve the viscous NS equations
(1.3). The results are summarized in figures 4.8–4.9. Since the results are essentially independent of
the choice of entropy, we chose to quote here only the results for the canonical pair (4.2).

The viscosity in NS equations is doing a better job than heat flux in damping oscillations around the
shock discontinuity. The plots of total entropy, reveal a greater entropy decay than the NS equations
with heat conduction. On the other hand, we still observe an oscillatory behavior around the contact
discontinuity, even with the refined mesh in figure 4.9.

4. Full Navier-stokes equations with viscous and heat fluxes. In figures 4.10–4.11 we record
the results for the full NS equations (1.1). As before, the difference due to different entropy functions
is undetectable and we chose to record here only the canonical entropy.

As expected, these numerical solutions are the smoothest ones found in our numerical experiments.
especially in very fine meshes, depicted in figure 4.11. Small oscillations remain with underresolved
meshes.

Not only the oscillations around the shocks are damped out by viscosity, but the oscillations around
the contact discontinuity are significantly reduced due to the heat flux. Compared with the results
of NS equations with heat conduction (1.4) in figures 4.6–4.7, oscillations in the neighborhood of the
shock are better damped here thanks to the viscosity terms. The remaining sharp “spike” at the tip
of shock discontinuity is due to the relatively small viscosity coefficient of air.
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Figure 4.4. Euler equations with 4000 spatial gridpoints, U(u) = −ρ ln (pρ−γ) and
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Figure 4.5. Navier-Stokes equations with heat conduction and no viscous term. 1000
spatial gridpoints, U(u) = 1+γ

1−γ · (pρ)
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Figure 4.6. Navier-Stokes equations with heat conduction and no viscous terms. 1000
spatial gridpoints, U(u) = −ρ ln (pρ−γ) and same ∆t and ∆x as Figure 4.5
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Figure 4.7. Navier-Stokes equations with heat conduction and no viscous terms. 4000
spatial grids, U(u) = −ρ ln (pρ−γ) , ∆t = 2.5 × 10−5, ∆x = 2.5 × 10−4
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Figure 4.8. Navier-Stokes equations with viscous terms and no heat conduction. 1000
spatial gridpoints, U(u) = −ρ ln (pρ−γ) , ∆t = 2.5 × 10−5, ∆x = 10−3
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Figure 4.9. Navier-Stokes equations with viscous terms and no heat conduction. 4000
spatial grids, U(u) = −ρ ln (pρ−γ) , ∆t = 2.5 × 10−5, ∆x = 2.5 × 10−4
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Figure 4.10. Navier-Stokes equations with viscosity and heat conduction. 1000 spa-
tial gridpoints, U(u) = −ρ ln (pρ−γ) , ∆t = 2.5 × 10−5, ∆x = 10−3
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Figure 4.11. Navier-Stokes equations with viscosity and heat conduction. 4000 spa-
tial gridpoints, U(u) = −ρ ln (pρ−γ) , ∆t = 2.5 × 10−5, ∆x = 2.5 × 10−4
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